OASIS Event

"European Consortium Selection" IMAGING AND BIOPHOTONICS

Example of EU biophotonics projects in collaboration with Cerimed: EndoTOF PET - US

> Pr.René LAUGIER La Timone Hospital

ENDO TOFPET & Ultrasound

A dedicated detector for pancreas and prostate biomarkers developments

FP7 project, Grant Agreement n °256984P. LecoqP. LecoqCERN, Geneva, SwitzerlandMarseilles

The CONSORTIUM

Part.	Organisation	Short Name	Organisation legal name	Principal	City, Country
no.	type			investigator	
1 coord	University Hospital	UnivMed	Université de la Méditerranée, Aix-Marseille II Team 1a. UnivMed/AP-HM Team 1b. UnivMed/Cerimed Team 1c. UnivMed/CRO2	R. Laugier R. Laugier V. Vidal E Mas	Marseille, France
2	International Research Organisation	CERN	European Organization for Nuclear Research	P. Lecoq	Geneva, Switzerland
3	University Hospital	CHUV-UNIL	CentreHospitalierUniversitaireVaudoisetUniversité de Lausanne	J. Prior	Lausanne, Switzerland
4	Research Organisation	DESY	Deutsches Elektronen- Synchrotron	E. Garutti	Hamburg, Germany
5	Higher Education	Delft TU	Delft Technical University	E. Charbon	Delft, Netherlands
6	SME	Fibercryst	Fibercryst	D. Perrodin	Villeurbanne, France
7	SME	KLOE	Kloe SA	P. Coudray	Montpellier, France
8	Higher Education	LIP	Laboratório de Instrumentação e Física Experimental de Partículas	J. Varela	Lisbon, Portugal
9	SME	SurgicEye	SurgicEye GmbH	J. Traub	München, Germany
10	University Hospital	TUM	Technische Universität München Team 10a. TUM/NUK Team 10b. TUM/CAMP	M. Schwaiger M. Schwaiger N. Navab	München, Germany
11	Higher Education	UHEI	University of Heidelberg	H.C. Schultz- Coulon	Heidelberg, Germany
12	Higher Education	Unimib	University Milano Biccoca	M. Paganoni	Milano, Italy

- EndoTOFPET-US collaboration
 - Grant # 256984

- PICOSEC Marie Curie TN
 - Grant # 289355
- ERC Advanced Grant -TICAL
 Grant # 338953

What the rationale ? Pancreas is difficult to examine !

.eft kidnev

Main pancreatic duct

Uncinate process

uperior mesentaric artery

- Retroperitoneal organ, deep and hiden
- Not directly accessible to endoscopy

<image>

Because pancreatic cancer is a big problem ! Epidemiological data

- > 3050 new cases/year in France
- Enhancing incidence
- 2 nd digestive cancer in mortality,
- 6th in frequency
- Poor prognosis
- Lack of improvement in the early diagnosis

Because clinical symptoms are scarce!

- Early clinical symptoms do not exist :
- Signs often only appear when neighbouring organs are involved : too late
- **Pain** : very evocative (solar type) but very late
- Jaundice : non specific and always late
- **Biology** : CA 19-9 non specific and very late

Ultrasonography is not sensitive enough

Low sensibility, only when tumor exceed 20 mm

CT Scan: confirmation and staging for operability but only for diagnosed lesion

Precision : 83-93 % Good for resectability evaluation

Endosonography:

Combines endoscopy and US

Radial Linear

• Endosonography: radial probe

7. MHz

• Endosonography: linear probe

• Endosonography: the linear probe allows a direct cytology guidance for a puncture

Positon Emission Tomography: Only for staging primitive pancreatic lesion and metastasis

• E R C P: no longer for diagnosis but only for treatment

Is a pancreatic cancer screening possible ?

- Not for the general population , BUT
- Some sub populations are of interest for the GE:

* Chronic pancreatitis patients, at a late stage, with a stricture of MPD or MBD or both

- * IPMN: mixt and branch duct types
- * Chronic Hereditary Pancreatitis
- * Mucinous neoplasms
- * Endocrine tumors

Chronic pancreatitis patients, at a late stage

Relevance of a stricture ??

Surveillance or surgery ??

* IPMN

- Transformation of the cubic type epithelium of the ducts into a mucinous type
- Acute bouts of pancreatitis and duct dilation
- Mucus secretion

- Risk of degeneration into a cancer
- Main duct++, branch duct and mixt types: surveillance

* IPMN mixt and branch duct forms: MRI and EUS +++

No cancer ? Surveillance ?

* IPMN mixt and branch duct forms: MRI and EUS +++

Chronic hereditary pancreatitis

Chronic pancreatitis but very high risk of cancer
50 Years:
What nature for this stricture ???

Mucinous cyst adenoma

• Octreoscan for endocrine tumors: confirmation and staging but some are benign for a long time

CLINICAL RATIONALE : exists

- Pancreas is a difficult organ with late symptoms
- Surveillance of pancreatic patients is difficult despite immense improvements of technology
- TEPscan and EUS have followed a very rapid development but are unable to allow a good FU
- EndoTOF PET-US may help us to solve difficult problems of therapeutic indications: surveillance or surgery ?

The AIM : Imaging tool for pancreas and prostate cancer biomarker development

ENDO TOFPET US

©DESY / Stuhrmann

• Endo = echo endoscope (EUS)

Tool

• 1 for pancreas

• 1 for prostate

Spatial resolution Biopsy

• US = Ultrasound

Anatomic + Molecular imaging

• PET

- Endoscopic head close to organ
- External plate for coincidences

• TOF = Time-of-Flight

Other organs background rejection

Imaging tool for pancreas and prostate cancer biomarker development

ENDO TOFPET US

©DESY / Stuhrmann

• Develop new biomarkers for pancreas and prostate cancer

Objectives

- Ex: mAb16D10 antibody for pancreatic cancer
- Ex: ⁶⁸Ga PSMA for prostate
- Introduce PET as an endoscopic imaging tool
- Develop intra-operative interventional imaging techniques ?

Technical challenges

- Non symetric PET
- High level of miniaturization imposed by anatomy
 - Thin crystal pixels for high granularity of the endoscopic probe with ≤ 1mm spatial resolution
 - High level of electronics and mechanical integration (5μm precision)
- Electronic collimation with < 200ps timing resolution
 - for background rejection outside 3cm ROI
- Ultrafast light detection: Multi-digital SiPM
 - for single optical photon counting and ultimate timing resolution
- Tracking of all movables parts
 - for \leq 1mm determination of their relative positions

External plate design

External plate

Endoscopic probe: Prostate

Endoscopic probe:Pancreas

Biological challenge: tumor

heterogeneity: role for biomarkers

68Ga-PSMA PET/MRI

Pelvis dimensions	 H: 35.6 cm V: 21.4 cm 	Prostate volume	44 cm ³ 50kBg
(prostate level)		Prostate upatke	1,14 kBq/cm3
Torso dimensions	 H: 36 cm V: 24 cm 	Urinary bladder (volume	270 cm ³ 1.3MBo
Distance between	 Center urinary bladder-center prostate : 5.7 cm Lower limit urinary bladder- upper limit prostate : 1.4 cm 	Urinary bladder uptake	4.8 kBq/cm ³
prostate and urinary bladder		Prostatic lesion volume	7.7 cm ³ 27kBq
		Prostatic lesion uptake	3 53 kBq/cm ³
		Thickness of pelvic bone (prostate level)	2.28 cm

First preclinical tests on pigs

Endoscopic probe: Prostate

Conclusions

- EndoTOFPET-US in two versions for developing new biomarkers:
 - Prostate
 - Pancreas
- First time endoscopic configuration for a PET
 - Asymetric PET
 - High level of miniaturization and integration
- TOF performance close to 200ps
- Opportunity to compare analog and digital approaches in a clinical environment