

Textile LEDs curtain lighting up by photovoltaic strips (EURECAT vision from 1D-NEON perspective)

Dr. Petar Jovancic, Leader of Advanced Material Research, Functional Textile Unit

Terrassa, Textiles de uso técnico. Innovando con tecnologias fotónicas (Innovation Workshop), December 12, 2017

MODEL OF OUR TECHNOLOGY CENTRE

INNOVATING FOR BUSINESS

Private, non-profit entity dedicated to industrial research and technology knowledge transfer, providing the technical and human means for all companies, individuals, and entities interested in these areas to effectively apply them.

VISION: To become a leader in the area of industrial research and technological transfer for the innovation system across Catalonia.

FUNCTIONAL TEXTILES UNIT

TWO LOCATIONS

Mataró

SMART TEXTILES LAB CHEMISTRY LAB

Canet de Mar

TEXTILE MANUFACTURING LAB TEXTILE TESTING LABS

R&D FOCUS

FUNCTIONAL TEXTILES

E-textiles: Designing & Prototyping

Sensors into garments; bio signals, flexion, posture, and motion Heating, lighting, and sound emitting actuators

Multifunctional Fabrics: Designing & Industrializing

Intelligent properties with stimuli-sensitive biopolymers Functional materials into complex fabric structures

Composites: Materials & Structures

Pre-formed reinforced fabrics to optimize structures and processes Hybridizing materials to optimize performance

Project numbers and facts (www.1d-neon.eu)

Title of the project: 1D Nanofibre Electro-Optic Networks (1D-NEON)

Grant agreement: 685758

Type of project: NMP (Nanotechnologies, Advanced Materials and Production)

Duration: 48 months (1st April 2016 to 31st March

2020), 14 partners

Total budget: EUR 9106237,25 (EU contribution EUR 7995648,88)

Total manpower: 1191.3 person-months **Project coordinator:** Prof. Jong Min Kim (University of Cambridge)

1D-NEON's proposed paradigm shift underlying the use of fibre-based nano-materials

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union 's Horizont H2020 research and innovation programme under grant agreement No. 685758

EURECAT's role in 1D-NEON

Work Package #	WP3				Sta	Start Date or Starting Event						to M48			
Work Package Title	Manufacturing Process Development														active fibres in textile
Participant #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	manufacturing lines
Short Name	OXU	cu	UNOVA	CeNTI	EURECAT	ТІТV	SILVACO	SAATI	RELATS	SSPI	HENKEL	ГG	PHILIPS	BIOAGE	
Person/months	0	0	0	(18)	(50)	(52)	0	(6)	(8)	0	$\left(\begin{array}{c} 6 \end{array} \right)$	0	0	0	
	-	-	-				-			-		-	-	-	

WP1=2PM WP2=10PM WP4=15PM WP7=3PM WP8=2PM

Start date of 1D-NEON 01/04/2016

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union's Horizont H2020 research and innovation programme under grant agreement No. 685758

Volume resistivity after the curing process 0.0008 Ω/cm

Integrated demonstrator* (small scale) with commercial OPV photovoltaic stripes (InfinityPV Aps, Denmark), commercial fibre embedded LEDs (Harvatec, Taiwan) connected by ELITEX conductive yarns (TITV, 1D-NEON partner) and conductive adhesive (Locklite Ablesstik CE 3103WLV (HENKEL, 1D-NEON partner).

Technology

Appearance

Filler Type

Application

Application

Surfaces

Product Benefits

Filler Weight, %

Typical Package

Cure

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union s Horizont H2020 research and innovation programme under grant agreement No. 685758

Textile LEDs Curtain Development

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union's Horizont H2020 research and innovation programme under grant agreement No. 685758

Textile LEDs Curtain Development

- Design of fibre-based energy storage material as a part of LED curtain for storage energy during the sunny day(s) or by a sun simulator for lighting up the LEDs during the night using advanced weaving and knitting fabrics;
- Design of yarn embedded LEDs with textile properties;
- Establish a set of mechanical and electrical characterization tests for functional fibres/yarns before and after their implementation into woven and knitted structures in order to choose proper methodology of protection of the functionality(is);
- Standardize adhesive materials for interconnection of selected component/functionality using Henkel's materials (adhesive, inks, coatings, encapsulants ...);
- Optimize the process of **protection of electronic interconnection** by lamination and protective solutions (silicones, acrylates and PU formulations).

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union 's Horizont H2020 research and innovation programme under grant agreement No. 685758

Textile integration of fibre energy storage device (fiber based supercapacitors) by weaving

1D-NEON (1D Nanofibre Electro-Optic Networks) project has received funding from the European Union's Horizont H2020 research and innovation programme under grant agreement No. 685758

THANK YOU!

info@eurecat.org www.eurecat.org

www.twitter.com/eurecat_news

) www.facebook.com/Eurecatorg