

Imaging LIDARs for space industry

Jordi Riu

Tres Cantos, 07/05/2019

©2019 Beamagine SL, All rights reserved

3D LIDAR point clouds

Performance figures

Specifications	VALUES	
Electro-optical unit	Full solid state design based in MEMS	
Wavelength, Classification	1064nm, Class 1 or 3R selectable by the user	
Range	80m @ 10% reflectivity 180m @ 50% reflectivity	
Point rate	600 Kpx/s	
Image spatial resolution	- 600 x 200px @ 5 frames/s - 500 x 150px @ 10 frames/s	
Field-of-view (HxV)	60 x 20°	
Angular resolution	- 0,1º in both horizontal and vertical - 0,15º horizontal, 0,13º vertical	
Range accuracy	±0,7 cm @ 10m ±1,5 cm @ 25m	
Inertial sensor	Included	
Mechanical		
Size (WxDxH)	26 x 23 x 13 cm	
Weight	3Kg	
Electrical		
Power consumption	15W	
Supply voltage	12 VDC	
Interfaces	UDP Ethernet packets	
Software		
Integration	ROS driver for Linux L3CAM library for Windows	
Test application	RVIZ and Beamagine Visualizer	

Key aspects of the Beamagine LIDAR technology

BEAMAGINE

- Wide FOV and solar radiation immunity
- Solid-state design with large entrance pupil for long range detection
- High resolution real-time video data
- Scalable for volume production
- Class 1 eye-safe

OPTICAL AND IMAGING PERFORMANCE

BEAMAGINE

Field-of-view	50x50⁰
Image resolution	350x350 px
Frame rate	5 Hz
Point rate	612,5 Kpx/s
Angular resolution (x-y)	0.14 - 0.14º
Angular sampling accuracy	<0.01º
Range resolution	±1 cm
# of returns	4

• Sun Simulator: Arrimax 18/12 kW, 1370 W/m², 5778 ^oK

• Halogen lamp 5 kW: 580 W/m², 3000 ^oK

Class 1 – Full eye-safe

Irradiance (W/m ²)	Range @ 80% refl. (m)	Range @ 50% refl. (m)	Range @ 10% refl. (m)
No sun simulator	112	89	40
580 – Indirect	85	68	30
1400 – Indirect	78	61	27
580 – Direct	18	15	7
1400 – Direct	16	13	6

Class 3R

Irradiance (W/m ²)	Range @ 80% refl. (m)	Range @ 50% refl. (m)	Range @ 10% refl. (m)
No sun simulator	327	258	115
580 – Indirect	191	151	68
1400 – Indirect	174	137	61
580 – Direct	41	33	15
1400 – Direct	37	29	13

Class 3B

Irradiance (W/m ²)	Range @ 80% refl. (m)	Range @ 50% refl. (m)	Range @ 10% refl. (m)
No sun simulator	659*	586*	268
580 – Indirect	444*	351	157
1400 – Indirect	404	319	143
580 – Direct	96	76	34
1400 – Direct	85	67	30

*The maximum range is limited by the ambiguity distance between two consecutive laser pulses, which is fixed at 426m.

Kay aspects of Beamagine LIDAR for a space applications

- Full solid-state
 - Normally imaging LIDAR devices are based on moving elements like spinning mirrors, galvanometric scanners or rotating heads. Macromechanical devices are sensitive to vibrations and shock. A space grade LIDAR device has to tolerate to this effects generated during the launching and this is only achievable by a solid-state device.
- Solar background immunity
 - Background radiation is the main source of noise of any LIDAR device. In space environment, the solar background can generate critical failures during operation.
- <u>High resolution and real-time frame-rate</u>
- <u>Small size & light weight</u>
- Robust data fusion
 - The LIDAR point-clouds have to be fused reliably with outer imaging sensor (camera images) without and kind of parallax error and with ultra-low computational cost.

Space use cases:

- Orbital robotics
 - Satellite docking and rendezvous
 - Spaceborn close proximity navigation
 - Satellite pose estimation
 - Space debris removal
- <u>Planetary exploration</u>
 - Rover navigation
 - Path planning
 - Terrain assessment
 - Obstacle detection & avoidance
 - Self-guiding
 - Terrain mapping landing aid

Range and intensity mode point clouds

Raw data, no filtering applied

Performance test

- Double reflectivity target (10%-75%)
- Tests up to 80m (Google Maps) 10% reflectivity
- Range and Intensity images obtained
- Some objects (buildings) visible at 200m

Performance test: 50m @ 10% reflectance

Performance test: 80m @ 10% reflectance

10% target

Performance test: 80m @ 10% reflectance

Sample point clouds

Challenges in data fusion

Challenges in data fusion

Problem:

- Different update frequencies of LIDAR and camera
- LIDAR and camera points do not match exactly, e.g. pole of the traffic light

Traditional solution:

- Transform LIDAR points into camera image using vehicle ego-motion information.
 - Parallax errors
 - High computational cost

Direct data fusion

Beamagine technology enables a unique feature: a self-registered 3D lidar image with another 2D imaging mode (**RGB**, **NIR**, **SWIR**, **polarimetric**, **hyperspectral or thermal**). This is enabled by a patented technique that collects both imaging modes through the same optics which enables a hardware based automatic registration that **avoids complex data fusion algorithms and parallax error**.

BEAM\GINE

THANKS FOR YOUR ATTENTION!

Contact information

C. Bellesguard, 16 E08755 Castellbisbal Barcelona (Spain)

phone:	+34 659706005
email:	info@beamagine.com
web:	www.beamagine.com
twitter:	@beamagine