Artificial Intelligence Applied to Failure Detection in Space

Al for Industry International Congress, 28-29.04.2021 secpho

ALTER TECHNOLOGY

ALTER TECHNOLOGY

THE TÜV NORD GROUP IS A GLOBAL LEADER IN TECHNOLOGY SERVICES WITH THE CLEAR AIM OF ACCOMPANYING ITS CLIENTS WITH PRUDENCE AND FORESIGHT INTO THE FUTURE."

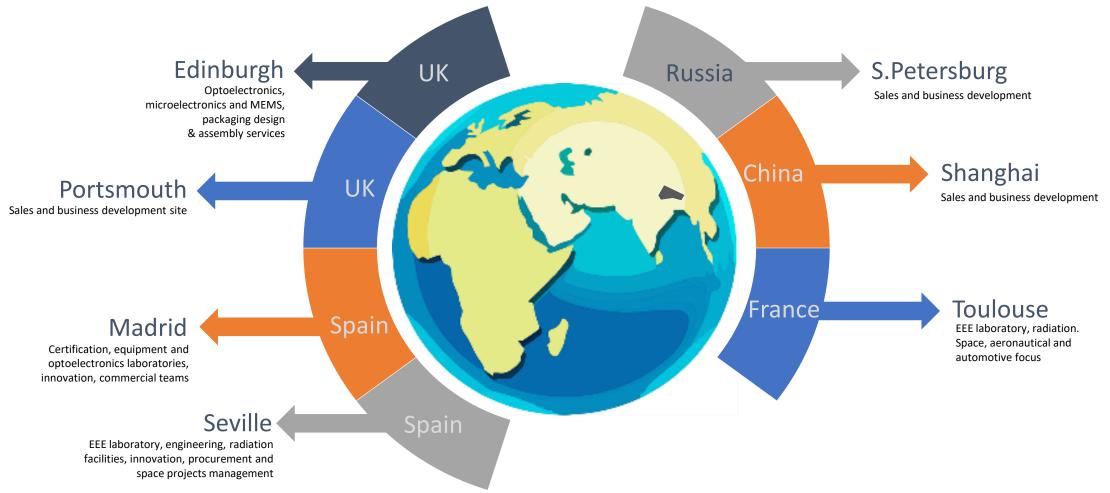
TüV NORD Group at a Glance

50

100

companies

countries services are carried out 10,780


employees

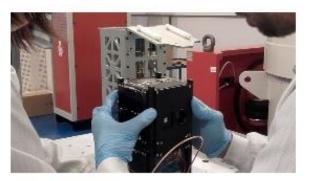
1,229

M€ revenues

ALTER Technology in the world

Business areas

Hi-Rel components Engineering, Testing and Procurement

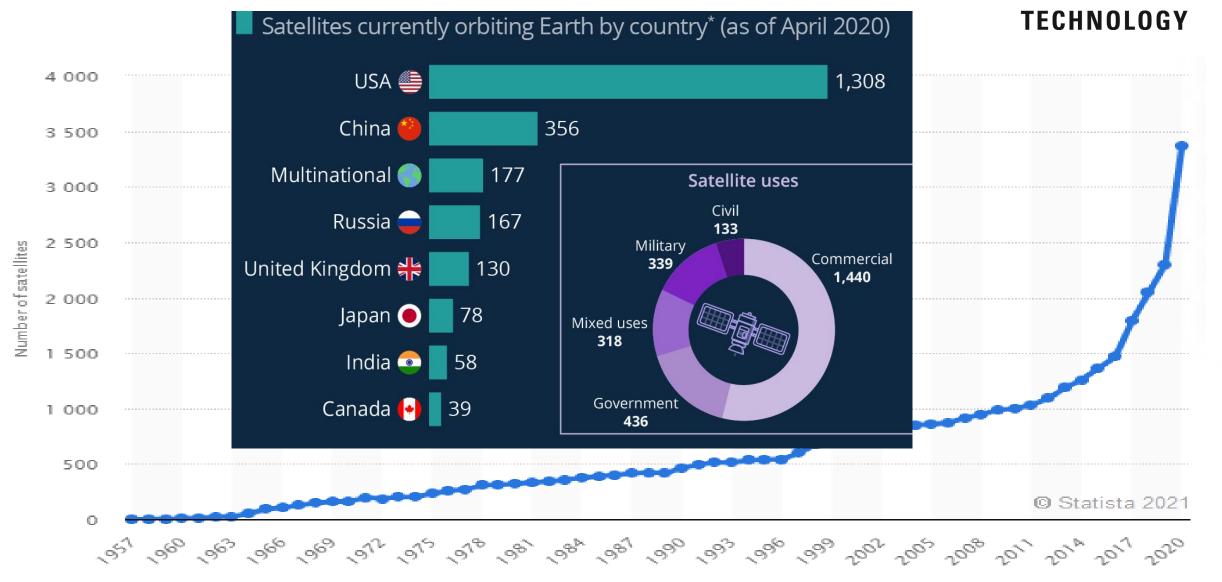

Electronic Systems Testing and CE Marking

Alarm Systems Conformity of security systems

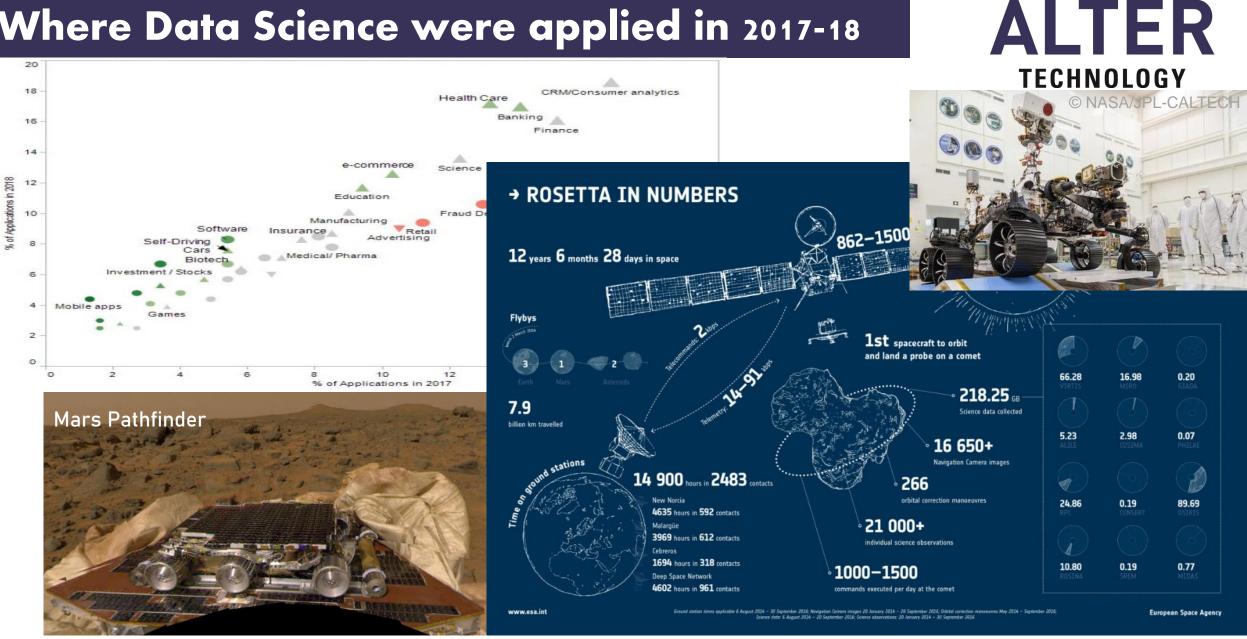
Packaging and Assembly For opto and microelectronic devices

Small Satellites Quality assurance and test to small satellites

Drones Compliance and assurance of safety standards



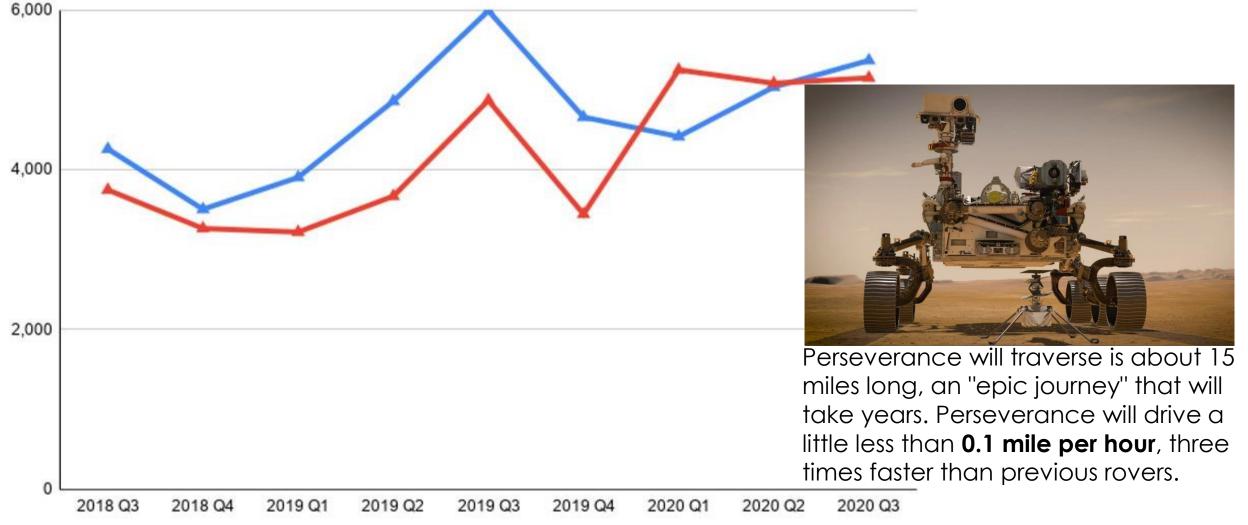
Automotive Engineering, testing and certification services.


Other services Certification, CE Marking, Alarm Systems

Number of active satellites from 1957 to 2020

ALTER

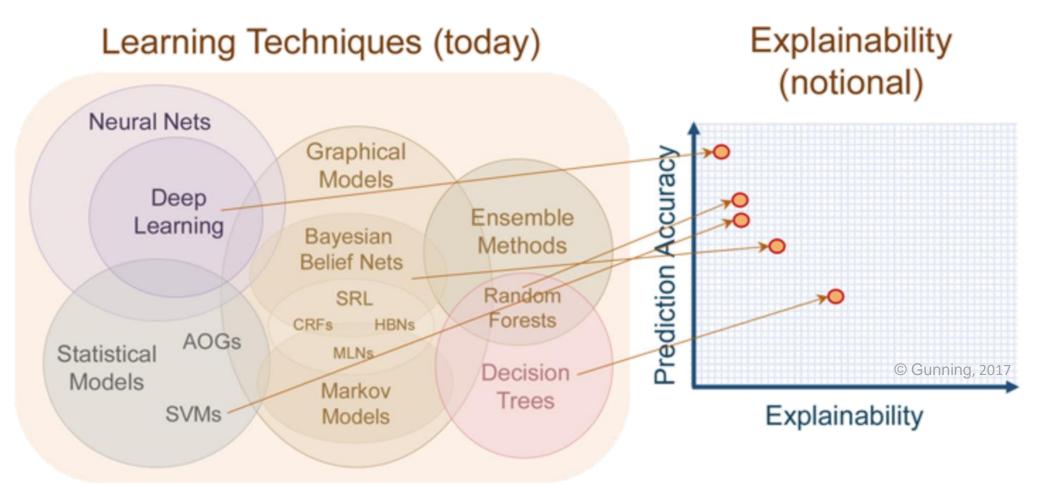
Where Data Science were applied in 2017-18


7

Thousand Miles per Accident with Tesla

Autopilot Off

Autopilot On



© Brad Templeton, Forbes.

Relative Explainability Learning Algorithms

Large integration

Number of active satellites from 2016 to

ALTER TECHNOLOGY

LEO

LEO

?

1024

Nano

*

2026

[101]

[102]

Company	No. Sats	Sats Size	Orbit	Year (Operative)	Reference	Company	No. Sats	Sats Size	Orbit	Year (Operative)	Reference
Globalstar Inc.	48	Medium	LEO	?	[49]	Sky and Space Global	200	Nano	LEO	2020	[74]
Iridium Inc Aieron	75	Medium	LEO	2019	[50]	GeoOptics	24	Nano	LEO	?	[75]
OneWeb	648	Mini	LEO	?	[51]	NOAA	12	mini	LEO	2020	[76]
O3b (SES mPower)	27	Medium	MEO	2021	[52]	PlanetIQ	18	Micro	LEO	2020	[77]
Orbcomm	11	Mini	LEO	2015	[53]	Zhuhai Orbita Control Engineering	34	NC.	LEO	2020	
Gonets SS (Roscosmos)	11	Mini	LEO	2014	[54]	Ltd.	34	Micro	LEO	2020	[78]
SpaceX	4425	Mini	LEO	2024	[55]	Canon	100	Micro	LEO	?	[79]
Telesat	117		LEO	2021	[56]	Helios Wire	28	Micro	LEO	2023	[80]
BlackSky Global	60	Micro	LEO	2021	[57]	Swarm Technologies	100	Pico		?	[81]
SPIRE Global	175	Nano	LEO	2020	[58]	Iceye (BridgeSat)	18	Micro	LEO	2020	[82]
Planet Labs	5		LEO	2008	[59]	Analitical Space	?		LEO	?	[83]
Planet Labs	12	Nano	LEO	2015	[59]	Hiber	48	Nano	LEO	?	[84]
Planet Labs	20	Nano	LEO	2016	[59]	Fleet Space	100	Nano	LEO	2022	[85]
Planet Labs	12	Nano	LEO	2016	[59]	Audacy	3		MEO	2020	[86]
Planet Labs	48	Nano	LEO	2017	[60]	ELSE	64	Nano	LEO	2021	[87]
Planet Labs (Terra Bella)	15	Micro	LEO	2017	[61]	AISTech	102	Nano	LEO	?	[88]
Kepler Communications, Inc.	140	Nano	LEO	2022	[62]	AISTech	18	Nano	LEO	?	[88]
Kineis	25	Micro	LEO	2022	[63]	HawkEye360	21		LEO	?	[89]
ExactEarth	67	Nano	LEO	2018	[64]	Axelspace	50	Micro	LEO	2022	[90]
Planet Labs	88	Nano	LEO	2017	[65]	Capella Space	36	Micro	LEO	?	[91]
Planet Labs	20	Nano	LEO	2019	[66]	Karten Space	?	Nano	LEO	?	[92]
Astro Digital	?	Micro	LEO	?	[67]	UnseenLabs	?	Tuno	LEO	?	[93]
BRITE partners	5	Nano		2014	[68]	NSLComm	60	Nano	LEO	?	[94]
GHGSat, Inc.	3	Micro		2020	[69]	EightyLEO	?	Mini	LEO	2022	[95]
Satellogic	60	Micro	LEO	2020	[70]	UrtheCast	24	Ivinu	LEO	2022	[96]
Space View	16	Medium	LEO	2022	[71]	Orbital Micro System	40	Micro	LEO	?	[97]
CASIC	156		LEO	2025	[72]	Lacuna Space	32	Nano	LEO	?	[97]
Leosat (Thales Alenia)	108	Large	LEO	*	[73]	Hera Systems	50	INATIO	LEO	?	[99]
						CASC (xinwei)	300		LEO	2025	
						CASC (xinwei)	500		LEO	2023	[100]

SRT Marine

SatRevolution

Number of active satellites from 1957 to 2020

ALTER TECHNOLOGY

Company	No. Sats	Sats Size	Orbit	Year (Operative)	Reference	Company	No. Sats	Sats Size	Orbit	Year (Operative)	Reference
Commsat Technology Development			LEC		[100]	Tekever	12	Micro	LEO	?	[126]
Co. Ltd.	72		LEO	2022	[103]	KLEO Connect	300		LEO	?	[127]
Aerial and Maritime	80	Nano	LEO	2021	[104]	NorStar NorthStar	40	Medium		2021	[128]
Harris	12	Nano	LEO	?	[105]	Laser Light	12		MEO	2020	[129]
Earth-i	15	Mini	LEO	?	[106]	Koolock	?			?	[130]
LinkSure Network	272	101111	LEO	2026	[107]	ROSCOSMOS	10			2023	[131]
Synspective	25	Mini	LEO	?	[108]	Hypercubes	?	Nano		?	[132]
Space Systems Engineering Ukraine	?	winn	LLO	2	[109]	ROSCOSMOS	288	10	LEO	2025	[133]
Astrome	200	Mini	LEO	2023	[110]	B612 Foundation	?	Micro	LEO	?	[134]
Cloud Constellation Corp.	10	IVIIII	LEO	?	[111]	NASA	8	Micro	LEO	2017	[135]
1		N	LEO	?		CG Satellite	60		LEO	2020	[136]
Transcelestial	?	Nano		•	[112]	Amazon	3236		LEO	?	[7]
Kleos Space	4	10	LEO	2019	[113]	Viasat	20		MEO		[13]
HyperSat	6	Micro	LEO	*	[114]	Iridium Inc.	66 2956		LEO	2000	[11]
Galaxy space	1000		LEO	?	[115]	Boing	2958 4600		LEO	*	[9]
ChinaRS	10	Micro	LEO	2021	[116]	Samsung Yaliny	135		LEO	*	[9]
Laser fleet	?		LEO	2022	[117]	Globalstart inc.	48		LEO	1999	[9] [10]
XpressSAR	4			2022	[118]	OmniEarth	18		LEO	1999	[10]
Orbital oracle Technologies	100	Nano	LEO	2024	[119]	COMMStellation	72	Micro	LEO	*	[137]
Methera Global	16		MEO	2022	[120]	Myriota	50	Nano	LEO	?	[130]
Trident Space	48	Mini	LEO	2026	[121]	ADASpace	192	INdito	LEO	2021	[139]
VEOWARE	?		LEO	2022	[122]	Ubiquitilink	24		LLO	2021	[140]
Umbra Lab	12		LEO	?	[123]	ZeroG Lab	132		LEO	?	[142]
EarthNow	?		LEO	?	[124]	Stara Space	?	Nano	LEO	2	[142]
OQ Technology	?	Nano		?	[125]	Hyperion	?	Nano	LEO	2	[143]
~ 87						Horizon Technologies	10	Nano	LEO	2	[145]
			© Aerospace 2020, 7, 133			SpaceFab.US	16	Nano		?	[146]
				1	· ·	HEO Robotics	10	Nano	HEO	?	[147]
						Artemis Space	?	Nano		?	[148]
						Pixxel	?	Nano	?	?	[149]
						US space Force	75	Large	MEO	1993	[150]
						o o prato i orac		2			[]

VKS

ESA

CNSA

Large

Medium

Large

24

30

35

MEO

MEO

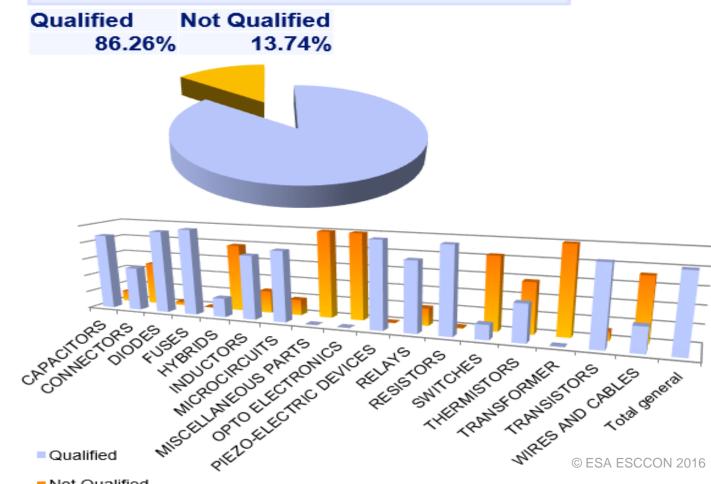
MEO

1995

2020

2020

[151]


[152]

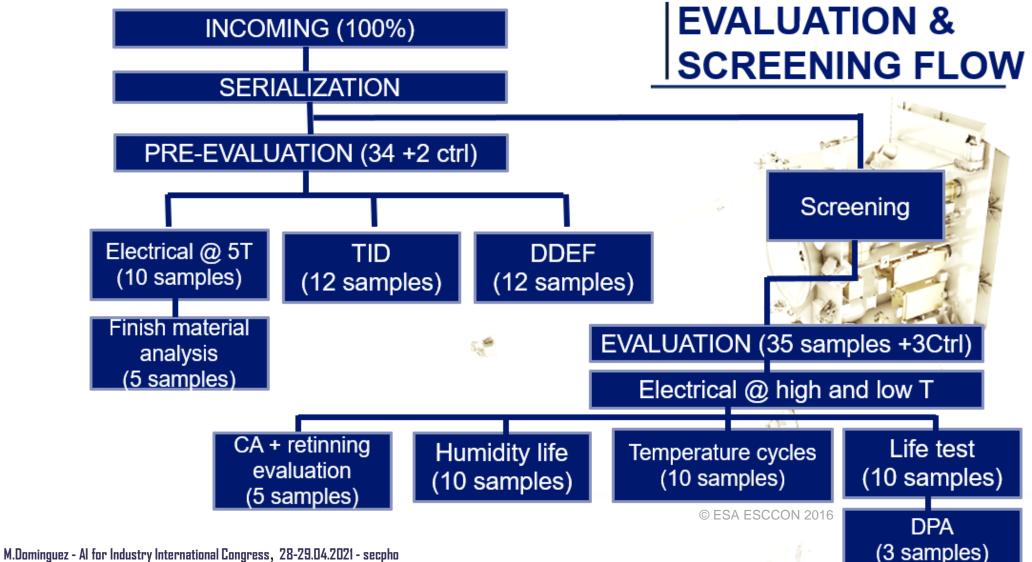
[153]

Many different technologies

3769 line items procured for FM

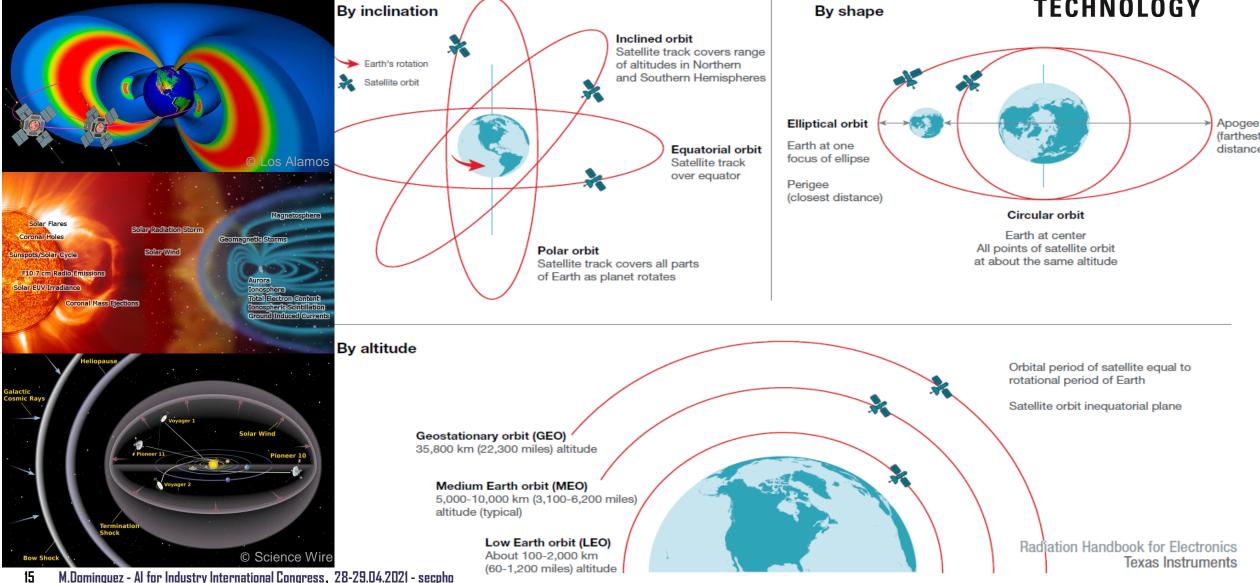
ALTER TECHNOLOGY STATISTIC

	ESCC	MIL	
CAPACITORS	391	197	83
CONNECTORS	123	2	123
DIODES	76	131	9
FUSES	1		
HYBRIDS		16	57
INDUCTORS	50	2	18
MICROCIRCUITS	39	358	88
MISCELLANEOUS			-
PARTS			2
OPTO ELECTRONICS			29
PIEZO-ELECTRIC			
DEVICES	3		
RELAYS	4		1
RESISTORS	859	796	21
SWITCHES		1	5
THERMISTORS	12	2	19
TRANSFORMER			14
TRANSISTORS	107	70	21
WIRES AND CABLES	11		28
Total	1676	1575	518


Not Qualified

٠

Complex test sequence


14

Types of Earth orbit

ALTER TECHNOLOGY

Types of radiation in space

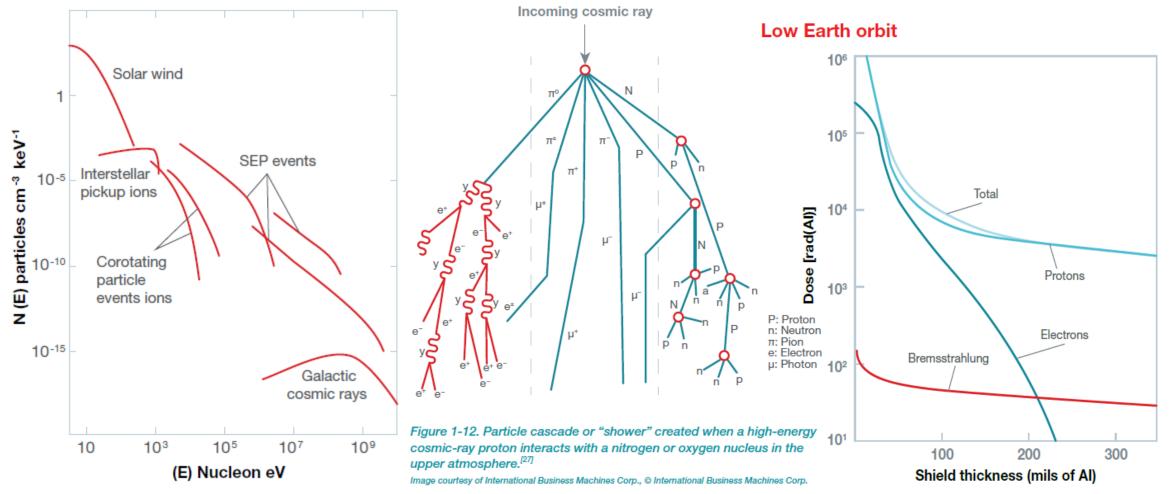


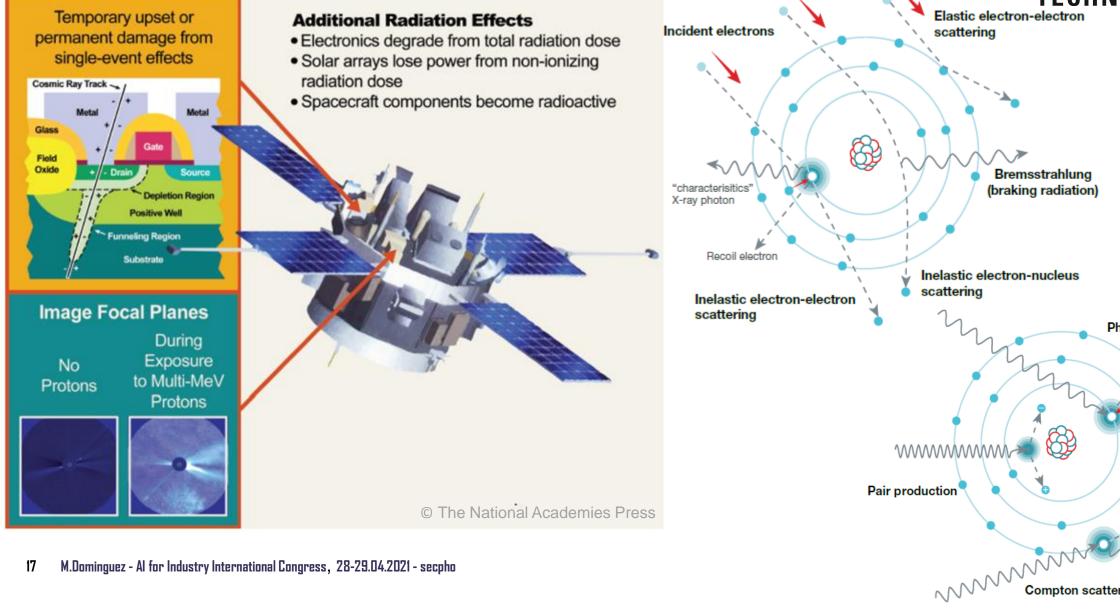
Figure 1-6. Differential proton flux as a function of proton energy for solar wind, SEPs and GCR distributions.

16 M.Dominguez - Al for Industry International Congress, 28-29.04.2021 - secpho

Figure 2-18. Plot of TID in low Earth orbit as a function of aluminum shielding thickness for three space radiations: protons, electrons and Bremsstrahlung.^[38]

Radiation damages

ALTER TECHNOLOGY


Photoelectric effect

Compton scattering

Photoelectron

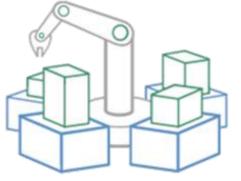
Characteristi X-ray photon

Recoil electron

RAD LABTM OUR RADIATION LABORATORY

RAD LABTM ACCREDITATIONS

ALTER


Virtual Lab TM – Concept

٠.

RUN EXPERIMENTS IN THE LAB FROM ANYWHERE IN THE WORLD

CONDUCT

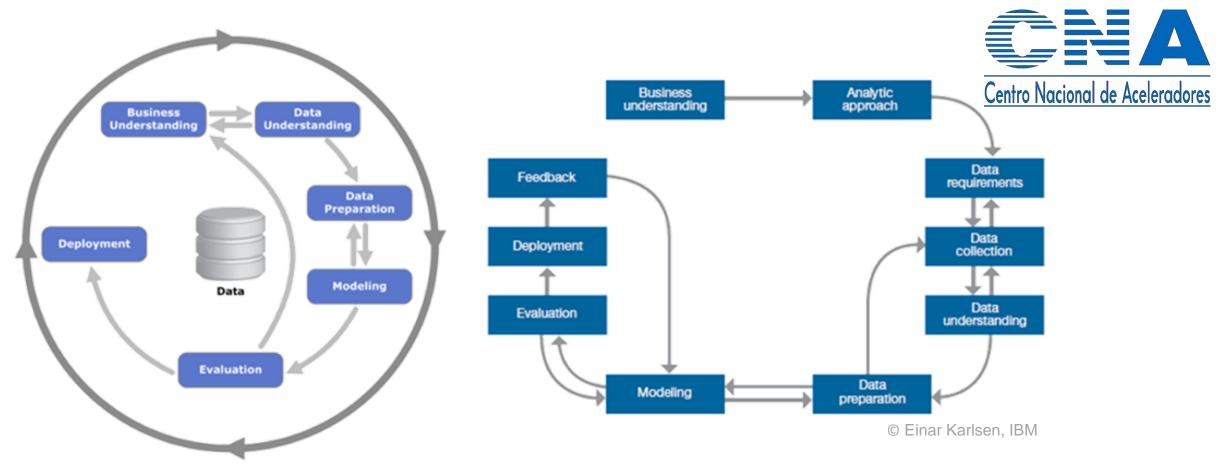
Design your tests over Virtual Lab conducts the web your tests

3 EXPLORE

Virtual Lab organizes your data into a smart data base

🗸 ANALYZE

DOEEET crunches and analyzes data


TUV NORD GROUP

DIGITAL

ACADEMY

CRISP-DM methodology

ALTER TECHNOLOGY

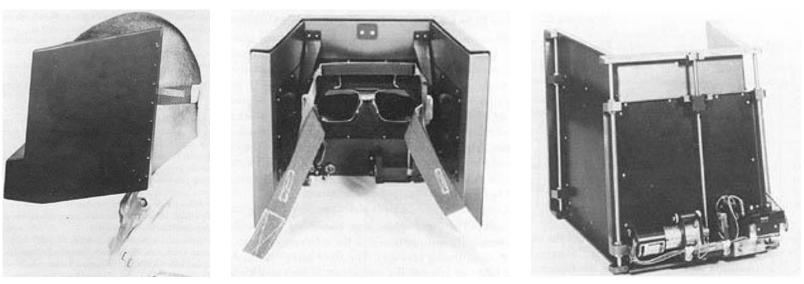
Cross Industry Standard Process for Data Mining

IBM Data Science Methodology

PRECEDER Tool – objectives

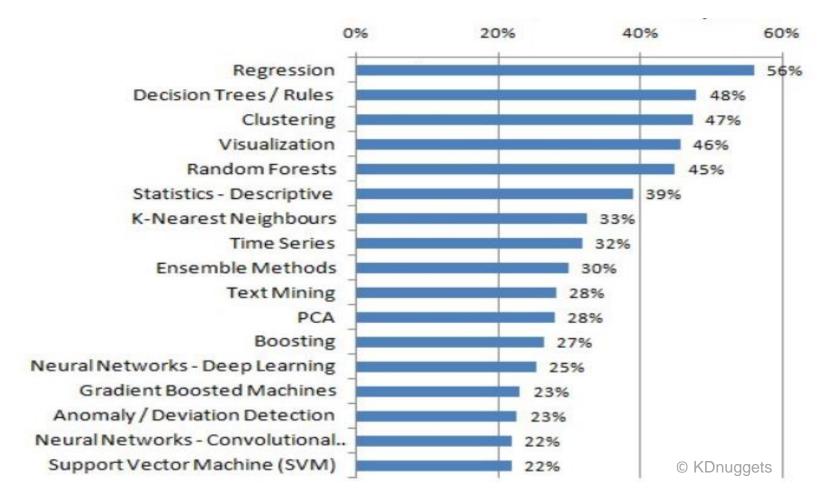
Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación

- (1) Analyze the structure of the currently available result set from irradiation tests conducted on electronic devices, mainly those used for space and/or high-energy projects.
- (2) Classify the data to homogenize the structure of each group and be able to extract useful information that allows to feed the Automatic Learning software.
- (3) Apply machine learning techniques, one of the branches of Artificial Intelligence, for **identifying the model** that best suits the needs of the project.
- (4) Obtain predictions of the behavior of electronic devices subjected to radiation based on machine learning applied to tests already performed on other devices.
- (5) Analyze the behavior of a small sample of devices to **check predictions** against experimental results.



Supervised Learning

ALFMED experiment - Apollo Light Flash Moving Emulsion Detector


ALTER TECHNOLOGY

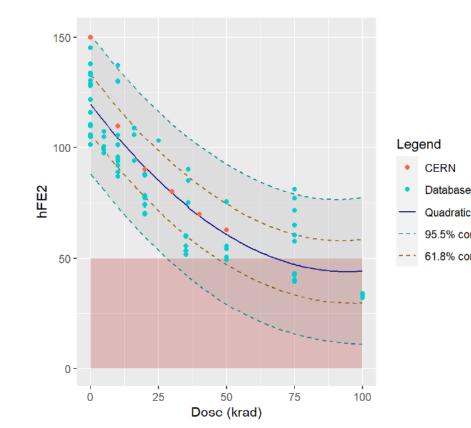
Crewmembers of the **Apollo 11 mission** were the first astronauts to describe an unusual visual phenomenon associated with space flight. During transearth coast, both the Commander and the Lunar Module Pilot reported seeing **faint spots or flashes of light** when the cabin was dark and they had become dark-adapted.

Top Data Science Methods used in 2018-19

PRECEDER – Data understanding

Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación

hFE4: Biased hFE4: Biased Centro Nacional de Aceleradores 250 -250 -200 200 150 -150 100 -100 -25 50 75 100 0 75 0 25 100 50 Dose (krad (Si)) Dose (krad (Si))


ALTER

TECHNOLOGY

PRECEDER – Evaluation

Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación

ALTER TECHNOLOGY

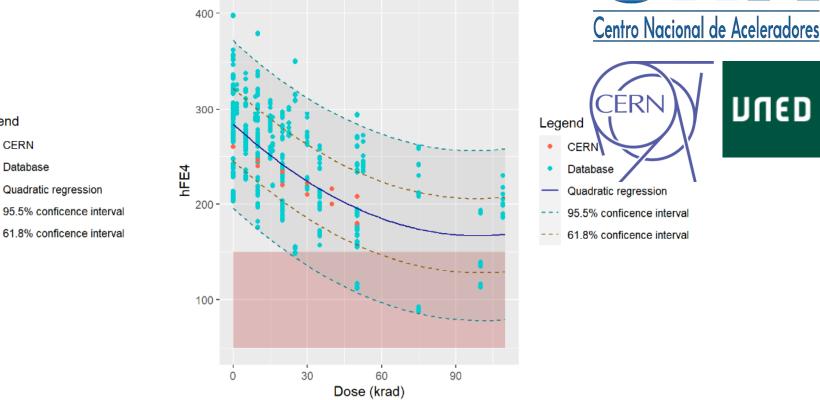
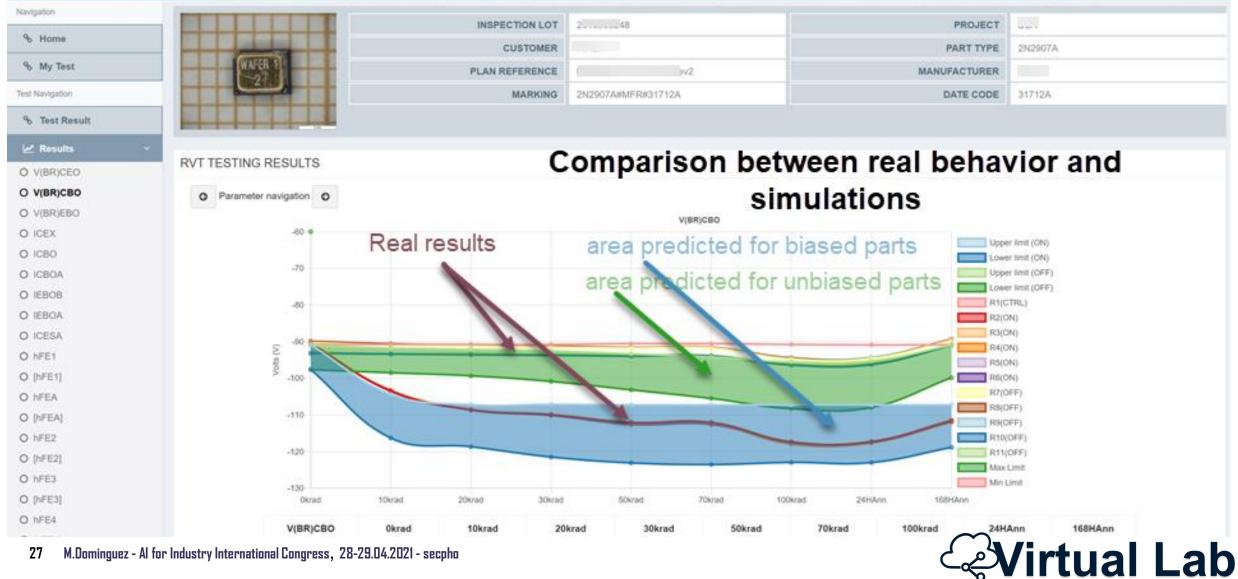


Fig. 3. Degradation of the h_{FE2} gain, measured at $I_C = 0.1$ mA, for the 2N3019 BJT while irradiated with biased condition.

26 M.Dominguez - Al for Industry International Congress, 28-29.04.2021 - secpho


Fig. 4. Degradation of the h_{FE4} gain, measured at $I_C = 1$ mA, for the 2N3810 BJT while irradiated with biased condition.

Virtual Lab TM – Predictions

Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación

Collector to Base Cut-off Current IC801 10000 10000 nA 1.253 ±2.985 VC8=75 V Emitter to Base Cut-off Current VEB=6 V IEBO1 -10000 -10000 nA 0.150 ±2.383 Collector to Base Cut-off Current ICBO2 -10 -10 nA ±2.748 /CB=60 V 0.983 Emitter to Base Cut-off Current 1EBO2 -10 -10 nA. 0.100 ±2.377 VEB=4 V 50 50 orward Current Transfer Ratio hFE1 -----133.759 ±0.791 VCE=10 V, IC=0.1 mA Forward Current Transfer Ratio hFE2 75 325 75 325 -154.738 ±0.658 /CE=10 V, IC=1.0 mA Forward Current Transfer Ratio hFE3 100 100 ±0.554 VCE=10 V, IC=10 mA ---173.024 Collector-emitter saturation voltage VCE(sat)1 300 300 mV 142.256 ±1.716 C=150 mA; IB=15 mA 1.000 ----600 IC=150 mA; IB=15 mA VBE(sat)1 1200 600 1200 mV 850.406 ±0.068 Base-emitter saturation voltage

2N2222

Low Frequency Bipolar NPN Transistor

max

PRE

Limits

POST

min

UNIT

MFR

95.50%

min

Virtual Lab TM – Predictions Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación

EEE Radiation info

← BACK

10 Items per Page	×
PART TYPE 🌐	FUNCTION \$
2N2222	Transistor, NP
	Transister MD

ALTER

PARAMETERS

PART:

Confidence

FUNCTION

MANUFACTURER:

SYMBOL

ALTER TECHNOLOGY

A Home

Q EEE Radiated

Wirtual Lab DATE: 2021/04/08

@ CONDITIONS

Level

20 krad

Value

CLEAR

TEST HOUSE

ALTER TECHNOLOGY

ALTER TECHNOLOGY

ALTER TECHNOLOGY

ALTER TECHNOLOGY

ALTER TECHNOLOGY

Virtual Lab TM – Innovation Award 2019

ALTER TECHNOLOGY

erster Innovation Award aus Anlass des Jubiläums vergeben

Der erste TÜV Nord Group Innovation Award ist vergeben – das Virtual Lab von Alter Technology und TÜV Nord Systems setzte sich in einem Kopf-an-Kopf-Rennen gegen zahlreiche Mitbewerber durch.

- 1. Autonomous landing, rendezvous, and docking capabilities.
- 2. Probes exploring the far regions of the Solar System has a **communication delay is between 6-42 minutes** to travel to Mars and back and over an hour beyond Jupiter.
- 3. Machine learning (ML) algorithms can identify debris in space so that decisions on **collision avoidance** can be anticipated and avoided.
- 4. Rovers can **navigate around obstacles** independently of human control and intervention.
- 5. Identify instances whereby complex navigational calculations can be made in real-time by the probe to **react to conditions difficult to predict from Earth** pre-mission.
- 6. Predictive models can be created with AI which allow space actors to more **effectively assess**, **prioritise**, **and manage**.
- 7. ...and many many more.

Manuel Dominguez Chief Digital Officer at ALTER Technology

Tomas Alba Edison, 4 – Seville 41092 P +34-954-467-050 M +34-627-922-909 E manuel.dominguez@altertechnology.com www.altertechnology-group.com

TÜV NORD GROUP