

CNN algorithm for single and overall weight estimation of melons using UAV images

Aharon Kalantar 1,2, Yael Edan 2 Amit Gur 3 and Iftach Klapp 1

Agriculture Research Organization –Volcani Center, Agro-Optics and Sensing Lab
Ben-Gurion University of the Negev, Department of Industrial Engineering & Management
Neve-Yar, ARO-Volcani Center

Lab's Web Site: <u>https://iftachklapp.wixsite.com/agopt</u>

Motivation and Objective

Motivation: Save the labor required for locating and weighting each individual melon in a phenotyping field.

Objective: Develop a robust algorithm that detects melons in an agricultural environment using UAV images for yield estimation.

Challenge : ROI's composed of a minority of small objects of 30X30 pixels or less .

Ref: A.Kalantar, Y.Edan, A.Gur, I.Klapp**, "A deep learning system for yield estimation of melons using UAV images," Computers and Electronics in Agriculture., accepted for publication Aug. 2020

Data set and Images acquisition

The data was acquired at Newe Ya'ar in midday time

- Images acquired by a UAV hovering 15 meters above the field with RGB camera
- The acquisition was done in three different years at summer season, before picking time (2016-2018)
- Drone Type: DJI Phantom 4 Pro
- Camera Type : DJI FC6310 (RGB)
- Image size : 5472 × 3648 pixels

4220 melons were manually tagged, from 4 different images, for ground truth (2018 images).

> Augmentation: Rotation, Flip, Translation, Shear, Scaling (zoom)

Irrigation was stopped one week prior to the measurement.

Data set - Weight estimation

- 138 melons were randomly selected and marked in the field by placing a sign next to them.
- For each melon was provided its size and weight characteristics (validation set).
- in addition, extra data which contained 32 measured melons were provided in order to build the yield estimation regression model.

Algorithmic pipeline

Task 1 – Object Detection

RetinaNet network

Based on <u>ResNet50</u> network as backbone

- Creates <u>FPN</u> (Feature Pyramid Network) for high resolution and strong semantics – efficient way to create proposal candidates
- Use classification and regression <u>subnets</u> for generating final bounding boxes
- Focal Loss solve unbalanced classes problem

* Lin et al. "Focal loss for dense object detection" (2017)

Object Detection Process

Divide the image to 10*10 pieces with overlap

Detected all melons in each piece

Compose all detection back to the original image

Remove duplication with NMS (non-maximumsuppression) algorithm

*This is a small part from a big image (zoomed) for illustration purpose

Task 1 – Detection results

Task 1 – Detection results

		clas	s: 91.43%	= melon AP								
1.0 -	\sim											
0.8 -									2016	2017	2018	2018
									Im age 1	Image 2	Image 3	Image 4
							True	Positive	252	800	1032	180
10.0 ·	1						False	Positive	18	48	39	25
Preci							False N	legative	35	89	12	11
0.4 -							P	recision	0.93	0.94	0.96	0.88
								Recall	0.88	0.90	0.99	0.94
0.2 -								F1-	0.90	0.92	0.98	0.91
0.0 -		-	-	,	-,							
0	.0	0.2	0.4	0.6	0.8	1.0						
			Reci	all								

Task 2 – Single Melon Segmentation

Chan-Vese active contour

Binary mask

Ellipse fitting

Chan-Vese active contour

- > A cost function which is solved iteratively using a gradient descent
- Homogeneous regions have low variance values $\arg \min F(c_1, c_2, C) =$

$$\mu_1 \cdot Lenght(C) + \lambda_1 \int_{imid_1(C)} |u_0(x, y) - c_1|^2 dx dy + \lambda_2 \int_{out id_2(C)} |u_0(x, y) - c_2|^2 dx dy$$

- C_1 the **mean intensity** value of all the pixels **inside** contour
- C₂ the mean intensity value of all the pixels outside contour
- *C* contour
- μ penalize the total length of the edge contour (set to 1)
- λ_1 the importance of the inner homogeneity relative to the homogeneity outer (set to 1)
- λ_2 the importance of the outer homogeneity relative to the inner homogeneity (set to 1)

Feature extraction – Ellipse fitting (PCA) 🛛 🚱 🎯 🌆

> The shape of the ellipse is determined by a set of 5 parameters

$$\frac{\left[\left(x-x_0\right)\cos\left(\theta\right)-\left(y-y_0\right)\sin\left(\theta\right)\right]^2}{a^2}+\frac{\left[\left(x-x_0\right)\sin\left(\theta\right)+\left(y-y_0\right)\cos\left(\theta\right)\right]^2}{b^2}=1$$

- Centroid x co-ordinate (x_0)
- Centroid y co-ordinate (y_0)
- Semi-major axis (*a*)
- Semi-minor axis (b)
- Angle of tilt (θ)

Ellipse fitting examples

Task 3 – Yield estimation

Task 3 – Yield estimation

> Yield estimation process include 4 stages:

Regression model was tested using 116 randomly selected melons from 2018 season

- The mean absolute percentage error (MAPE) for individual melon estimation was 9% $MAPE = \frac{1}{N} \sum_{N} \left| \frac{X - \tilde{X}}{X} \right|,$
- An overweight overall yield estimation error of 2.9%

X is the actual value, \tilde{X} is the prediction

Results - Melon yield report

> An example of report that the system generate:

Malan	Contor	Contor	Semi	Semi	Semi	Semi	Moight	
	Pow	Center	Major	Minor	Major	Minor		
	ROW		Axis [pix]	Axis [pix]	Axis [cm]	Axis [cm]	(rg)	
1	13	2773	35.14433	29.64361	10.0412	8.4696	0.921661	
2	44	950	34.00361	22.79422	9.7153	6.5126	1.370152	
3	30	5250	20.85496	11.95877	5.9586	3.4168	1.681457	
4	33	2816	26.81252	19.01066	7.6607	5.4316	1.370152	
5	1612	1926	23.81392	18.00779	6.8040	5.1451	0.643062	
6	1619	2398	39.76633	23.39249	11.3618	6.6836	1.967597	

Results - Melon yield report

Summary

A systems for detection and yield estimation of melons from top view UAV

images of a melon field have been developed.

The system includes three main stages:

- Melon detection (RetinaNet, NMS) mAP = 0.914 | F-score>0.9
- Feature extraction (Chan-Vese + PCA)
- Yield estimation (Linear regression) only 3% underestimation
- The system provides promising results .

Thank You

Yield estimation – Linear regression

- The selected regression model was built from 30 randomly individual melons from 2017 season.
- The regression where based on max height (2*c) and max width (2*a) of each melon. W=0.1096653+0.003397929·c·a²

Type of	Parameters	R^2_{Adj}	
correlation	combination	value	
Linear	<i>c</i> + <i>a</i>	0.914	
Area	c * a	0.87	
Volume	$c * a^2$	0.94	

Ground sample distance (GSD)

Flight Height (Distance Above Ground)

Ground

Ellipse parameters given in pixels was translated to millimeters using GSD $GSD = \frac{h \cdot \Delta p}{f}$

- *h* approximate height from grour
- Δp sensors pixel size
- *f* focal length

For each image we calculate the GSD separately - the fly height was not uniform

Definitions

mean absolute percentage error (MAPE)

 $MAPE = \frac{1}{N} \sum_{N} \left| \frac{X - \tilde{X}}{X} \right|, \quad X \text{ is the actual value, } \tilde{X} \text{ is the prediction}$

Ref: Wikipedia